RPG Character Mecanim Animation Pack ReadMe

Last Updated: Oct 07, 2020

Hey, first off thanks for purchasing and using this pack! It is highly recommended to
watch Unity’s Animation Tutorial Videos before using this asset if you’re not familiar with
Mecanim.

Controller Overview

The RPG-Character Mecanim Animation Pack controller is composed of 5 required scripts:

1. RPG Character Controller: Main controller.

2. Super Character Controller: Handles ground detection and surface interaction.

3. RPG Character Movement Controller: Drives the character in various movement
states.

4. RPG Character Input Controller: Used to set the control inputs for directing the
character.

5. RPG Character Weapon Controller: Contains all the weapon information and
handles weapon switching.

And 3 optional Components:
1. Capsule Collider
2. Rigid Body
3. Nav Mesh Agent

The Rigidbody on the RPG Character is only needed if you want the character to interact with
other physics objects, the Nav Mesh Agent only needed if you plan to use pathfinding on your
character, and the Capsule Collider only required if you need player collisions.

http://unity3d.com/learn/tutorials/topics/animation

The 3 following scripts are optional:
1. PerfectLookAt: Makes the character look at a selected target.
2. IKHands: Automatically attaches the left hand to 2 handed weapons using IK.
3. GUI Controls: This script contains all the needed code for the Ul for demo purposes.

All scripts in the RPG Character Mecanim Animation Pack use the namespace:

RPGCharacterAnims

Setup

Video Tutorial
Here’s a video showing how to setup your own custom character using the RPG Character
animations: https://www.youtube.com/watch?v=I8V6SL70y5M

Pre-Installation

Before attempting to use the pack, you must first ensure that the tags and inputs are
correctly defined. There is an included InputManager.preset and TagManager.preset
which contains all the settings that you can load in.

The required inputs and tags are as follows:

o) Tags & Layers &,
P Tags

» Sorting Layers

¥ Layers

Default

Builtin Layer 1 TransparentfF

Builtin Layer
Builtin Layer !

Builtin Layer

Ignore Raycast

¥

Water
LT

Builtin Layer

LLr =

Builtin Layer
Builtin Layer
Builtin Layer

o

User Layer 8 TempCast
User Layer 9 Wallable

https://youtu.be/4LC1-IMO6Rs

Preset Type

UnityEditor . InputManager

%

@ 3 %

InputManager

¥ Axes
Size 26

P Horizontal

b Vertical

b AttackL

b AttackR

P CastL

P CastR

B Jump

B Jump

b Special

b Block

b Target

I Aiming

b Death

b LightHit

b Shield

b Relax

¥ Horizontal

b Vertical

P AimVertical

b AimHorizontal
b SwitchLeftRight
b SwitchUpDown
b Mouse ScrollWheel
P Mouse X

= Mouse Y

kL3

Set the Animator Controller to RPG Character Animation Controller
The animator should be set with ‘Apply Root Motion’ disabled, and Update Mode to ‘Animate

Physics’.

v it ¥ Animator
Controller

Avatar

Apply Root Mation
Update Mode
Culling Mode

Setup World Colliders
For any objects that you want the character to walk over or collide with, set them as Layer:
Walkable, and make sure this is set the same in the SuperCharacterController script. Objects
with primitive colliders on them such as sphere, box, or capsule colliders won’t need any
additional settings, but any object with a Mesh Collider needs the BSPTree script attached to it.

ﬁ 3,

I RPG-Character-Animation-Controll @

L RPG-CharacterAvatar
L

Q

| Animate Physics

| Cull Update Transforms

Ak || A

If you want to control the allowable slope height for the object, you can attach the
SuperCollisionType script to it as well.

'if;i ¥ DemoZone |] Static =
Tag | Untagged i Layer [Nalkable #_]
¥ .~ Transform £,
Position ®0 ol [[Zlo |
Raotation K;_-’BU.UUUUI ¥ 10 ZEU
Scale x|l [¥]1 [Z11
|5 Test Ground (Mesh Filter) G %
b | [Mesh Renderer ﬁ e 8
v || ¥ Mesh Collider G %
Convex LJ
Inflate Mesh -
Skin Width 0.01
Is Trigger
Material [None (Physic Material) | @
Mesh |l TestGround | @
v || ¥ BSP Tree (Script) 2
Script - BSPTree @
Draw Mesh Tree On Stal |
v @ Super Collision Type {Egi_[_:_t} g i,
Script « SuperCollisionType @
Stand Angle |70
Slope Limit |60

Add and Set Target

The RPGCharacterController script needs a target object for purposes of strafing, and if you're
using the PerfectLookAt controller, this also needs a target.

¥ | ¥ RPG Character Controller (Script) gl 2%,
Script RPGCharacterCaontraller @
Weapon | RELAX =
Target JTarget | @
Hin Shnantinn (PP § :

Copy Components

Copy all the components over from the RPG-Character prefab to your new character. If you
don’t want the GUI, PerfectLookAt, IKHands, and/or NavMeshAgent scripts these are all
optional.

¥ [RPG-Character || Static =

Tag | Player | Layer | Default ™|
Prefab | Select | Revert | Apply |
¥ .~ Transform Ll %%
Position X0 Yo |2[-2.5 !
Rotation X0 | ¥[-135 FAL l
Scale X1 [l lzl1 |
| @ [+ GUI Controls (Script) ,
P@@Super Character Controller (Script) '*'-
[@ [« RPG Character Controller (Script) #,
[@ [¥ RPG Character Input Controller (Script) 1,
> RPG Character Movement Controller (Script) #*,
F@ RPG Character Weapon Controller (Script) i,
|G| ¥ Perfect Look At (Script) i3 .
| IMav Mesh Agent @ =
» % Rigidbody @ =
> & ¥ capsule Collider i
b 5 ¥ Animator #,
I-|Er| IK Hands (Script) ﬁi

Set IK hand
If you're using IKHands script then you need to set your character’s left hand joint as the scripts
Left Hand Ob;.

v|e/ IK Hands (Script) [=
Script i~ IKkHands @
Left Hand Obj | A~B_L Hand (Transform) | e
Attach Left | A Attach (Transform) | @
Left Hand Position Weigh s U—:
Left Hand Rotation Weig{s 'U—i

Adjust Collider and Super Character Controller Spheres
Adjust the Capsule Collider for your character if needed, and also adjust the SCC Sphere’s
objects to proper size and position.

Move and/or Replace Weapons on New Character and Copy Weapon Parameters

Change LookAt bones and Target.

Set SCC Walkable Layer and Own Collider.

Position/Scale Weapons in Hand.
This is recommended to finalize during runtime so you can see how the weapon is positioned in

the character's deformed hand, and then copy the transform and re-paste it back when the
game is not running.

Position/Rotate Attachment Points.
The same process is followed for placing the weapons in the characters hands. Position the

Attach point, which will be the first child of the weapon game object, and then copy the
transform when the game is not running.

Weapon Switching

Coroutine _SwitchWeapons() handles all the weapon switching logic and is based off a
weapon integer value, and also off leftWeapon,rightWeapon, and LeftRight variables in the
Animator.

//0 = No side
/M = Left

/12 = Right
/13 = Dual

/lweaponNumber 0 = Unarmed
/lweaponNumber 1 = 2H Sword
/lweaponNumber 2 = 2H Spear
/lweaponNumber 3 = 2H Axe
/lweaponNumber 4 = 2H Bow
/lweaponNumber 5 = 2H Crowwbow
/lweaponNumber 6 = 2H Staff
/lweaponNumber 7 = Shield
/lweaponNumber 8 = L Sword
/lweaponNumber 9 = R Sword
/lweaponNumber 10 = L Mace
/lweaponNumber 11 = R Mace
/lweaponNumber 12 = L Dagger
/lweaponNumber 13 = R Dagger
/lweaponNumber 14 = L Item
/lweaponNumber 15 =R Item
/lweaponNumber 16 = L Pistol
/lweaponNumber 17 = R Pistol
/lweaponNumber 18 = Rifle
/lweaponNumber 19 == Right Spear
/lweaponNumber 20 == 2H Club

Animation Events

Note that there are animation events for all animations, and you’ll need methods in a script
attached to the same component as the Animator otherwise you’ll get warnings.

//Placeholder functions for Animation events
public void Hit(){

}
public void Shoot(){

}
public void FootR(){

}
public void FootL(){

}
public void Land(){

}
public void WeaponSwitch(){

}

Animator Parameters

Moving: Set in RPGCWeaponCitrl if there’s movement input and character motion.
Strafing: Set in RPCCharCitrl if pressing strafe.

Aiming: Set in RPCCharCltrl if aiming.

Stunned: If true, GetHit transitions to Stunned animation.

Shield: Set in RPGCWeaponCitrl if shield is equipped.

Swimming: Set in RPGCMoveCtrl if character collides with a water volume.
Blocking: Set in RPCCharCtrl if pressing block.

Injured: Plays injured idles and walking animation.

Crouch: Plays crouch animation on idle.

Animation Speed: Global adjustment.

Weapon: Set in RPGCWeaponCtrl, same as WeaponSwitch function.
WeaponSwitch: Used for determining which state weapon switch happens from.
LeftRight: Set in RPGCWeaponCirl to determine which side for 1 handed weapons.
LeftWeapon: Set in RPGCWeaponCtrl, same as WeaponSwitch function.
RightWeapon: Set in RPGCWeaponCitrl, same as WeaponSwitch function.
AttackSide: Set in RPCCharCtrl and determines left/right animation.

Jumping: Set in RPGCMoveCitrl, 0 grounded, 1 jump, 2 falling, 3 double jump.
SheathLocation: Set in RPGCWeaponCitrl, determines weapon location.
Talking: Set in RPCCharCtrl to determine which talking animation to use.
Velocity X: Set in RPGCWeaponCirl, character’s sideways speed.

Velocity Z: Set in RPGCWeaponCitrl, character’s forward/backward speed.
AimHorizontal: Used for Rifle, 2H Bow, and Crossbow for horizontal aim blend.
AimVertical: Used for Rifle, 2H Bow, and Crossbow for vertical aim blend.
BowPull: Blends pull back animation for 2 handed bow.

Charge: Blend charge animation for running with Shield.

Action: This is used by the various animation triggers to determine which animation to play.

Any questions about the Pack, please Email.

Thank you!

http://www.explosive.ws/community/contact

